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Abstract

Cytosine methylation plays an important role in many biological regu-
lation processes. The current gold-standard method for analyzing cytosine
methylation is based on sodium bisulfite treatment and high-throughput se-
quencing technologies. In this paper we introduce a new tool called TAMeBS
for cytosine methylation analysis using bisulfite sequencing data. It aims to
align long bisulfite-treated DNA reads onto a reference genome sequence
with high mapping efficiency and estimate the methylation status of each cy-
tosine very accurately. Our approach builds on recent advances in alignment
techniques, including bi-directional FM-index, approximate seeds, and the
likelihood-ratio scoring matrix which was designed particularly for aligning
bisulfite-treated DNA reads. We compared TAMeBS with several popular
bisulfite-treated read mapping tools on both simulation and real data. Ex-
perimental results showed that TAMeBS could detect many more uniquely
best mapped reads than other tested tools while achieving a good balance
between sensitivity and precision. The source code of TAMeBS is freely
available at https://sourceforge.net/projects/tamebs/.

1 Introduction

DNA methylation is one of the most characterized epigenetic modifications of
genomes. In eukaryotes, it involves an addition of a methyl group to the 5th car-
bon residue of a cytosine (mC5). Methylation of cytosines acts as a key factor in
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many essential biological processes, including embryonic growth, X chromosome
inactivation, genomic imprinting, cancer development in mammals, regulation of
gene expression, and transposon silencing in plant cells [[8, [19]. Cytosine methy-
lation levels vary significantly in different genomic contexts. Different from the
dominant CG methylation in mammalian organisms [18}, [10], cytosines can be
methylated in all sequence contexts in plants [[16]. Thus, studying methylation in
plants often requires much more complex analysis than in animals and human.

To determine the genome-wide DNA methylation patterns, the current gold-
standard method is based on sodium bisulfite treatment and high-throughput se-
quencing. Briefly, bisulfite treatment converts unmethylated cytosines into uracils,
which are subsequently changed to thymines by DNA polymerase chain reac-
tion (PCR). In contrast, the methylated cytosines remain unchanged after bisulfite
treatment (see Figure[I). Such different reactions of methylated and unmethylated
cytosines from bisulfite treatment enable us to determine the methylation states
by comparing DNA sequences before and after bisulfite treatment [[10]. Together
with the rapidly-advancing next-generation sequencing (NGS) technologies, we
are able to perform genome-wide methylation analysis at the single base-pair res-
olution at a very low cost. The technique that applies NGS to bisulfite treated
DNA sequences is called bisulfite sequencing or BS-Seq for short, and the result-
ing sequencing reads are then called as BS reads.

Watson 5'—ATTCGTTCATCCGGGT —3

Crick 3—TAAGCAAGTAGGCCCA—¥%

Bisulfite treatment

+FW 5'—ATTCGTTUATUCGGGT3 3—-TAAGCAAGTAGGUCUA—5 -FW

PCR

+FW 5— ATTCGTTTATTCGGGT—3 3 —TAAGCAAGTAGGTCTA-5 -FwW

+RC 3—TAAGCAAATAAGCCCA—5 5—ATTCGTTCATCCAGAT—3 -RC

Figure 1: Sodium bisulfite treatment does not affect methylated Cs (in rosy pink)
but unmethylated Cs. Thus, each C still left in the sequence after bisulfite treat-
ment implies a cytosine methylation at its genomic location. Since two comple-
mentary DNA strands are not symmetric after bisulfite treatment, four different
strand sequences may be produced after PCR amplification.

By applying the BS-Seq technique to genome-wide methylation analysis, the
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first computational step is always to map a large number of BS reads to a reference
genome sequence. While there are many excellent tools available for general se-
quence alignment tasks, they are often found not satisfactory or convenient when
applying to BS read sequences. This is not surprising due to the different charac-
terization of BS read sequences from the general genomic sequences. After the
bisulfite treatment, C/T mapping becomes asymmetrical. That is, a base T in a
BS read shall be allowed to match both bases C and T in the reference genome,
but not vice versa. On the other hand, as two complementary DNA strands usu-
ally contain different distributions of mC5’s, their converted strands after bisulfite
treatment would no longer be complementary with each other. Moreover, there
are two different PCR library protocols proposed for producing BS reads: direc-
tional protocol and non-directional protocol. The BS reads from directional proto-
cols come only from the two bisulfite-converted DNA strands, i.e., +F'W strands.
However, the BS reads generated by non-directional protocol could come from
either £ FW strands or their reverse complement +RC strands (see Figure [I).

In recent years, a number of tools have been developed for aligning the BS-Seq
read data. Based on their strategies to deal with the asymmetrical C/T mapping,
these aligners can be divided into two broad categories: wild-card aligners and
three-letter aligners [[1]. Three-letter aligners, such as BS Seeker [4], Bismark [9],
and BatMeth [[15]], choose to convert Cs in both reference genome and BS reads
to Ts and then apply some standard alignment tools (see Supplementary Material,
available athttps://sourceforge.net/projects/tamebs/). In comparison,
wild-card aligners such as Last [6] do not perform any C-to-T conversion. In-
stead, they treat Cs in genomic sequences differently—either replace each C in
the reference genome with a wild-card letter to match both C and T in reads or
define a scoring scheme for C/T mapping. It is worth noting that neither of the
above asymmetrical C/T mapping strategy seems perfect. A wild-card aligner can
achieve high genomic mapping coverage, but often introduce bias towards methy-
lated Cs in methylation level estimation. The three-letter aligners can align reads
with high accuracy, but may miss many uniquely mapped reads due to their re-
duced alphabet and sequence complexity. Besides, most of these aligners cannot
achieve a good balance between sensitivity and accuracy when they are applied to
map BS reads containing more mutations.

In this paper we present a new approach to aligning BS reads and estimating
methylation state, which is implemented in our software tool called TAMeBS. See
Figure[2|for a schematic illustration of TAMeBS. In brief, TAMeBS was built on the
bi-directional FM-index data structure which was originally proposed in [[12} [14]
as well as the classical seed-and-extend sequence alignment scheme. In the initial
seeding step, TAMeBS proceeds in the same way as a three-letter aligner in order
to find as many hits as possible. In the subsequent extension step, it instead adopts
the wild-card scheme together with a likelihood-ratio scoring matrix in order to
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find sensitive alignments.With the above strategy, TAMeBS is capable of not only
filtering out many ambiguous alignments from a common three-letter aligner, but
also reducing the bias towards methylated cytosines typically incurred by a wild-
card aligner. Experimental results show that TAMeBS could particularly recover
many true alignments that other tools would otherwise have missed.

In the present study we consider only the BS reads produced by Illumina plat-
form [3]] using directional protocol. Since the sequencing errors present in Il-
lumina reads are mostly substitutions, we ignore sequencing errors of insertions
and deletions in read alignments. In the remaining of this paper, we first introduce
the bi-directional FM-index data structure and show how to apply it to find the
hits of approximate seeds. Then, we discuss in detail the results of both simu-
lation and real biological experiments and the comparisons against four popular
bisulfite-treated read mapping tools.

2 Method

2.1 Bi-directional FM-Index

Briefly, a suffix array (SA) implies all suffixes of a text sorted in lexicographical
order. Thus, if a pattern string P occurs in a text 7', it gives rise to an interval
[{(P), u(P)] in the suffix array of T (denoted as S Ar) such that

I(P) = min {k : P is the prefix of Tsa,x)}

u(P) = max {k : P is the prefix of Tss, )}

where T's 4, 1s the suffix starting at T[S A7 (k)] and S A7 (k) is the original position
of the kth smallest suffix in 7. As suffix array requires a large amount of memory
space, a compressible data structure based on Burrows-Wheeler transform (BWT)
is often used in place of suffix array [2]. According to [3]], the SA interval of
pattern P can be computed from the BWT string of the text T very efficiently by
performing backward search.

Backward search can deal with exact matching very well. Unfortunately, it
becomes inconvenient to find approximate matches, especially when applying to
double-strand DNA sequences. To improve the efficiency and flexibility of finding
approximate matches, we need BWT-based backward search as well as forward
search. For this purpose, bi-directional BWT was firstly introduced in [12] to al-
low matching to be conducted in both forward and backward directions. To map
reads onto the reference genome 7T with errors allowed, bi-directional BWT uses
two SA intervals for T and for the reverse of T, respectively. Further to the work
of [12], H. Li proposed a so-called FMD-index [14], which is a single index struc-
ture constructed for both forward and reverse-complementary strands of DNA
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Extending on original reference genome and calculating scores

'

24TCGTTC ———> 6+6+6+6+6+3=33 /
100+ CCGGTT ——> 3+6+6-18+6+6=9

2-CCGGAT —> 3+6+6-18-18+6=-15
6+TCATCC —> 6+6-18+6+3+3=6

Figure 2: Schematic illustration of TAMeBS. Starting from the two complemen-
tary strands of a reference genome, we first convert all C’s to T’s and then fur-
ther generate their respective reverse complementary strands. The four resulting
strands are concatenated into a bi-directional collection, for which we build a bi-
directional FM index. After this index-building process, for each BS read, we
convert all C’s to T’s and then find its candidate mapping hits by using an ap-
proximate seeding strategy. As shown above, applying seed TTG gives rise to
hits at position 2 and 10 on the forward converted strand and position 2 on the
reverse-complementary converted strand. Another eligible hit is given by seeding
with TTT. Afterwards, hit extensions are performed between the original refer-
ence genome sequence and the read sequence without any C-to-T conversions.
The full alignments are scored with a likelihood-ratio scoring matrix (Table [T,
and those achieving the highest score are finally reported.



sequences. FMD-index uses a bi-interval to accomplish the search and matching
in two directions. Specifically, a bi-interval consists of three components. If we
write the reverse complement of P as P, then the bi-interval of P is defined as
[I(P), I(P), s(P)], where I(P) is the left endpoint of the SA interval of P and s(P)
is the length of this SA interval. We applied bi-intervals as well as the relevant
algorithms in [14] (i.e., Algorithm 2 and 3) to find exact matchings with BS-Seq
data.

Given a reference genome 7', we construct a bi-directional collection by con-
catenating two C-to-T converted strands of 7" and their respective reverse comple-
ments into one string (see Figure @) 1.e.,

T:Tio$oF+o$ono$oF_o$

where o denotes the string concatenation and $ is a sentinel symbol with the
lexicographical order $ < A < C < G < T. Moreover, T and T¢ represent the
C-to-T converted Watson and Crick strands while T¢, and T<_ represent their
reverse-complementary strands, respectively. With the FMD-index built on 7, a
bi-interval [I(P), [(P), s(P)] contains all the occurrence information of a BS read
P on four bisulfite-treated strands of the reference genome T to facilitate fast read
alignment.

2.2 Seeding

Seed-and-extension is a classical strategy to approach the sequence alignment
problem. As a critical part of this strategy, how to choose seeds has attracted a lot
of research attention. In this study, we apply approximate seeds [20] to detect the
possible genomic locations of a BS read. In order to achieve higher sensitivity,
we applied the C-to-T conversion on each BS read sequence P (see Figure [2). If
P 1s a BS read generated with the directional protocol, we need to execute the
mapping procedure (presented below) only once on P after the C-to-T conversion.
If P is a BS read generated with the non-directional protocol, we need to execute
the mapping procedure twice, one on P after the C-to-T conversion and the other
on P after the G-to-A conversion.

2.2.1 Approximate seeds

Given a read P with [ bp, a positive integer k, and the reference genome G, the
general sequence alignment problem is to find out all the substrings of G that can
match P with at most k mismatches (as mentioned earlier, we ignore indels here).
To locate the approximate matches of P in G, we partition P into m = |k/2] + 1
non-overlapped segments called seeds, as discussed in [20]. Then, we restrict the
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length of each seed to be at most [//m] bp. By the pigeonhole principle, there
will be at most | k/2] seeds containing two or more mismatches, if the read P is
aligned to a genomic location with at most £ mismatches. In other words, if P
has an alignment within k& mismatches, there must exist at least one seed being
matched exactly or with one mismatch. Such a matching is thus called a hit of
this seed. In general, the seeds with mismatches allowed in their hits are called
approximate seeds, to distinguish from exact seeds.

To align a read within k mismatches, (| k/2] + 1) approximate seeds can guar-
antee the full mapping sensitivity, as can (k + 1) exact seeds which are obtained
from an equally-spaced partition of the read sequence. However, due to their
dramatic difference in length, approximate seeds can achieve mapping specificity
significantly higher than exact seeds. It implies that, unless k is very small relative
to [, we shall always expect a significantly lower number of the total hits from
(Lk/2] + 1) approximate seeds than from (k + 1) exact seeds. This in turn reduces
the number of hit extensions significantly and the total mapping time as well. We
define r = k/I and call it the mutation rate. Thus, the larger the mutation rate r, the
higher the mapping specificity that approximate seeds improve over exact seeds.
This property is particularly useful for fast alignment of BS reads. In this case,
both reads and the reference genome are of the reduced alphabet and reduced se-
quence complexity due to the C-to-T conversion, thereby increasing the number
of seed hits. Our experiments on the real BS read data of Arabidopsis thaliana
show that up to 19 times less hits were generated with approximate seeds than
with exact seeds for subsequent extensions (see Supplementary Material).

2.2.2 Seeding with bi-directional index

We denote the seeds of P as P?, i = 0,...,m — 1, ordered according to their
starting positions in P, where m = |k/2] + 1. For each seed P, we conduct
bi-directional tests to find its hits (i.e., 1-approximation matchings) in a reference
genome G. The forward and backward tests are described in Algorithm 1 and
Algorithm 2 in Supplementary Material, respectively. They are developed actually
based on the same observation that, for any hit alignment of P9 either the first half
P90, 1;/2]] or the second half P? [|1;/2],; — 1] of P? shall be exactly matched,
where /; is the length of P?”, They also work in a quite similar way. For instance,
the forward test starts by searching for exact matchings in the forward direction,
from which we would obtain one of the following three possible outcomes:

1. Exact matchings of the whole seed P are returned.

2. The exact matching process halts before the middle position | /;/2] is reached.
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3. The exact matching process passed the middle position |/;/2] but fails to
reach the right end.

The outcome 1) implies that we have found all the hits of P®) which are the
exact matchings. When it occurs, we proceed to the hit extension step directly
without bothering to search for other hits that involve mismatches. In this way
it will significantly speed up the read alignment process. However, the mapping
sensitivity might be sacrificed, but not much, because there is little chance that the
seed P aligns to the true genomic location with exactly one mismatch and, at the
same time, to some other genomic location without any mismatch. If the outcome
2) occurs, we stop the current test in the forward direction and then proceed to
the test in the backward direction. In case of the outcome 3), we resume the
exact matching process at the middle position in order to find the hits of P?) with
one mismatch occurring in the second half. The exact matching process is then
recursively branched to accommodate a mismatch at each subsequent position. A
branching process is terminated once two mismatches are met. For each branching
process finally reaching the right end, we would obtain a bi-interval that gives rise
to a set of hits of P®.

Our method for finding the hits of approximate seeds as described above is
different from the one implemented in Masai [20]. Unlike ours, the method in
Masai essentially conducts approximate matching of seeds only in one direction.
With bi-directional tests we require an exact matching of either the first half or the
second half of the seed, which provides highly efficient filtering of spurious hits
and thus reduces the total seeding time, as already argued in [13]].

2.3 Hit extension

In this step, we aim to extend the seed hits into full alignments of reads. Different
from the previous seeding process, our hit extensions are performed between the
original read sequences and the reference genome sequence without any C-to-T
conversion (see Figure [2). It would enable us to penalize a mapping of a genomic
T against a read C which shall be considered as a mismatch. To further detect
sensitive alignments, we use log likelihood ratios to score alignments in the same
way as many traditional sequence alignment methods have done. In [6]], a statis-
tical model is proposed particularly for aligning BS reads to a reference genome
sequence, from which a log likelihood-ratio scoring matrix is thus estimated (see
Table [I). We also used this matrix in our tool TAMeBS to score alignments.



Table 1: The likelihood-ratio scoring matrix (from [6]]) used in TAMeBS.
Genome
A C G T
6 -18 -18 -18
-18 6 —-18 -18
-18 -18 6 -18
-18 3 -18 3

Read

H Q0>

2.4 Implementation details

We developed a software tool called TAMeBS, implemented in C++ language,
to align BS reads by making use of bi-directional FM-index, approximate seeds,
and the likelihood-ratio scoring matrix as discussed above. We further extended
TAMeBS to estimate methylation distributions from the aligned BS read data.

There are three components implemented in TAMeBS: bi-directional FM-index
building, seed-and-extension read mapping, and methylation calling. In the index
building component, TAMeBS constructs the suffix array as well as BWT of a
bi-directional collection 7 using a modified version of SA-IS algorithm [17]. In
order to trade off between the memory space and running time, only part of suffix
array 1s stored via sampling. In our implementation, one entry of the suffix array
would be retained every 32 entries. Other entry elements will be computed out
using the BWT whenever needed.

In the read mapping component, we align BS reads to the reference genome
one after another. For each read, we first convert all Cs to Ts if it contains any.
Then we find all the 1-approximation hits of its seeds by using the bi-directional
tests as described in Section B. For each hit found, we extend it to a full align-
ment of the read up to k mismatches. In order to improve sensitivity as well
as accuracy, the likelihood-ratio matrix shown in Table [I]is used to score align-
ments where no C-to-T conversion is made in both read and genome sequences.
For the sake of faster alignment, if a seed has too many hits (exceeding a preset
threshold B), all these hits will be thrown away and thus excluded from further
extension. The threshold value of B should depend on the seed length. The longer
a seed, the smaller the threshold value of B. In TAMeBS, B is empirically set to
be [2000/length(seed)] (note that the seed length varies with the mutation rate
r). We say an alignment is best if it contains at most k mismatches while achiev-
ing the highest mapping score. And, an alignment is called uniquely best if it is
the only best alignment. TAMeBS can report uniquely best, any best and all best
alignments of a read depending on users’ choices. By default, the uniquely best
alignments are reported.

In the methylation calling component, TAMeBS infers cytosine methylation
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from the read alignment results and produces two files. The first tabular file con-
tains the methylation status of every base C in the reference genome, and the sec-
ond file summarizes the distributions of methylated cytosines in different genomic
contexts.

3 Results and Discussion

Our experiments below use Arabidopsis thaliana (A.thaliana) as the reference
genome. It comprises five chromosomes with a total of about 119 million base
pairs. The genome sequence was downloaded from the NCBI database at http:
//www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=3702.

All experiments were run on a Linux server with processor Intel(R) Xeon(R)
CPU E5-2650 @ 2.00GHz and RAM 32GB. We compared the performance of
TAMeBS with four popular BS read alignment tools, BS Seeker, Bismark, Last and
BatMeth. For methylation estimation, we chose to compare it with Bismark only,
as Bismark was previously shown capable of achieving very high quantitative
accuracy [[L1]]. All tested tools applied their own default parameter settings except
for those error-related settings. Specially for BS Seeker and Bismark, we tried
different values for their error-related parameters and used the best results for
performance comparison (Supplementary Material).

3.1 Evaluation metrics

Note that all the tested tools report uniquely best alignments by default. Previous
studies [4, 1] used mapping efficiency for performance evaluation, which refers
to the percentage of reads that can be uniquely mapped by a tool. On simulated
datasets, we know where each read originates from in the reference genome. In
this case, a read is considered correctly aligned if it is aligned to its original ge-
nomic location. We hence define sensitivity as the percentage of total reads that
are correctly aligned and precision as the percentage of aligned reads that are cor-
rectly aligned. A single evaluation metric, called F-measure, is defined as the
harmonic mean of sensitivity and precision. That is,

2 x precision * sensitivity

F-measure = — —.
precision + sensitivity

The F-measure is intended to evaluate the overall performance of a tool. In gen-
eral, the higher the F-measure score, the better the alignment performance.
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3.2 [Evaluation on simulated data

We simulated three datasets, each of which contains 11 million 100-bp reads. All
reads were randomly generated from the reference genome A.thaliana. The three
datasets contain three, five, and seven mismatches per read, respectively (i.e., with
the mutation rate r of 3%, 5%, and 7%, respectively). In order to comprehensively
evaluate mapping capabilities, each dataset comprises 11 subsets generated from
the reference genome with different proportions of methylated Cs, ranging from
0% to 100% by increment of 10%. All subsets are of the same size, i.e., each
containing one million reads. We sampled mC5’s uniformly according to a given
methylation percentage, regardless of their genomic contexts. Furthermore, we
followed [6] to set the bisulfite conversion rate as 99%.

The detailed experimental results of the three datasets for five BS read map-
ping tools are summarized in Table [2] All the tested tools performed very well
at the low mutation rate r = 3%. Their mapping efficiencies and F-measures can
generally achieve up to 95% and 97%, respectively, while TAMeBS achieved the
highest. At the medium mutation rate r = 5%, Bismark and BS Seeker failed to
obtain satisfactory results as their mapping efficiencies dropped dramatically be-
low 80%. We believe that it is mainly due to their built-in aligner Bowtie, which
allows to map efficiently only reads with a limited number (<3) of mutations at the
5’ end. Again TAMeBS achieved the highest mapping efficiency and F-measure
(95.78% and 97.64%), improving over the second best aligner BatMeth by 2.57%
and 1.15%, respectively. At the high mutation rate r = 7%, the mapping effi-
ciency of BatMeth dropped below 24 %, which means that BatMeth failed to align
more than 76% reads. In contrast, TAMeBS and Last remained the high mapping
efficiency as well as the high F-measure score. Compared with Last, TAMeBS
uniquely mapped 3.2% more reads with an improved F-measure score of 1.48%.
Considering the CPU time used by each mapping tool, TAMeBS ran comparatively
fast with other tools at both the low and medium mutation rates, but several times
slower at the high mutation rate. We expected this relatively low time efficiency of
TAMeBS, as it was aimed mainly at achieving high mapping efliciency and accu-
racy (in terms of F-measure) for the subsequent accurate methylation estimation
analysis.

We noticed that the proportion of methylated cytosines in real plant genomes
is estimated between 5% and 25% [8]. In order to compare the alignment per-
formances of these tools under more realistic setup, we simulated another eight
datasets by using the BS read simulator Sherman (http://www.bioinformatics.
bbsrc.ac.uk/projects/sherman/). Each dataset contained one million 100-
bp reads generated from A.thaliana with bisulfite conversion rate of 90%. In Sher-
man, the bisulfite conversion rate is defined as the percentage of C’s converted to
T’s regardless of their genomic contexts. Thus, the proportion of methylated C’s
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Table 2: Average performances of five BS read mapping tools on three simulated
data sets. MapEft, Sens, prec, and F-ms represent the mapping efficiency, sensi-
tivity, precision and F-measure, respectively. When the mutation rate increased to
5%, Bismark and BS Seeker cannot uniquely align over 80% reads. When the mu-
tation rate further increased to 7%, only TAMeBS and Last successfully mapped
more than 90% reads. In comparison, BatMeth mapped less than 24% reads.

r Tools MapEft (%) Sens (%) Prec (%) F-ms (%) CPU time (m:s)
TAMeBS 95.85 95.74 99.88 97.76 03:58
Last 92.42 92.36 99.93 96.00 06 :57
3% | BatMeth 94.24 94.23 100.00 97.03 01:09
Bismark 95.50 95.46 99.90 97.63 05:24
BS Secker 95.66 95.54 99.87 97.65 09 :43
TAMeBS 95.78 95.58 99.79 97.64 08:02
Last 92.19 92.11 99.91 95.85 07:24
5% | BatMeth 93.21 93.22 100.00 96.49 04 :01
Bismark 79.51 79.29 99.72 88.34 04 : 38
BS Seeker 79.74 39.64 49.71 44,11 08 : 00
TAMeBS 95.11 94.80 99.67 97.17 19 : 38
Last 91.91 91.82 99.90 95.69 07:12
7% | BatMeth 23.49 23.47 99.78 38.01 04:12
Bismark 30.48 30.27 99.33 46.40 01:57
BS Seeker 75.33 37.24 49.44 37.24 14: 16

in this simulation setup was 10%. In addition, these eight datasets contained O to
7 SNPs per read, respectively. Figure 3| (or Figure S1 in Supplementary Material)
depicts the mapping performance of each tool. Similar to the above simulation re-
sults, TAMeBS achieved the highest sensitivity and mapping efficiency on almost
all test datasets. It also offered the best balance between sensitivity and precision
among all the compared mapping tools. Although having the highest precision
on the datasets with less than six SNPs per read, BatMeth achieved the sensitiv-
ity significantly lower than TAMeBS and thus the worse mapping performance in
terms of F-measure. We further compared the output alignments of TAMeBS with
those of Last and BatMeth. We found that more than 99.97% of the read align-
ments output by BatMeth were also found by TAMeBS on the first six datasets.
And, approximately 98.62% of the alignments output by Last were also found by
TAMeBS. These experimental results clearly show that TAMeBS can achieve very
high mapping efficiency and sensitivity at a small cost of precision.

3.3 Evaluation on biological data

To evaluate our tool on real biological data, we downloaded about 25M paired-end
reads from the NCBI Sequence Read Archive (SRA). The SRA accession number
is ERR046546, and the reads were sequenced from the A. thaliana genome by
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Figure 3: Simulation results of the eight datasets generated by Sherman. Only
TAMeBS and Last obtained good enough mapping performance on all eight sets
of data. For the other four tools, we presented their mapping results only when
their mapping efficiency were over 50%.

using [llumina Genome Analyzer IIx. As the current implementation of TAMeBS
takes only single-end reads as input, we chose to align the first read of each pair in
our first experiment. According to our observation, the first base is ‘N’ for most
reads. Thus, we cut the first base off from each read. At the end, we extracted
10 millions 100-bp single-end reads to construct a test dataset. The mapping
efficiency and running time of each mapping tool is summarized in Table[3] We
note that BatMeth consumed the least CPU time, but reported the fewest uniquely
best alignments (<38%). With the parameter setting k = 5, TAMeBS achieved
not only higher mapping efficiency than Last (57.05% vs 56.96%) but also higher
mapping speed. With k = 7, TAMeBS achieved even higher mapping efficiency
(57.48%) at the expense of long CPU time (>2h).
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Table 3: Mapping 10M 100-bp single-end reads extracted from ERR046546 to
the A. thaliana genome.

Software Mapping Efficiency(%) CPU Time(h:m:s)
TAMeBS(k = 3) 55.64 00:50:10
TAMeBS(k = 5) 57.05 01:19:13
TAMeBS(k = 7) 57.48 02:27:14
BatMeth(n = 3) 37.81 00:26:03
BatMeth(n = 5) 37.05 00:53:15
BS Seeker(e = 50, m = 3) 53.43 01:00:57
Last 56.96 01:36:11
Bismark(n = 3,1 = 36) 54.62 00:41:35

For the reads in this biological dataset, their original genomic locations are
unknown. In order to further evaluate the mapping sensitivity, we performed ex-
haustive search for all the reads that can be uniquely mapped onto the reference
genome within 3 mismatches. The mapping sensitivity is thus defined as the per-
centage of those uniquely mapped reads that would be returned by a mapping tool.
TAMeBS with k = 3 achieved the highest mapping sensitivity at 99.80%, indicat-
ing that it found almost all the unique best alignments within 3 mismatches (see
Supplementary Material Table S3). We conducted experiments on the whole 25M
single-end reads as well and obtained the similar results. All these experimental
results are presented in Supplement Material.

3.4 Methylation estimation

To evaluate the performance of a mapping tool in methylation estimation, we cal-
culate the methylation percentage as the number of methylated calls divided by the
total number of methylated and unmethylated calls from the read alignment result
and then show how close it is from the frue methylation percentage in the simu-
lation study. Besides the overall methylation percentage, we are also interested in
the absolute numbers of methylated and unmethylated cytosines in genome called
by a mapping tool. A cytosine’s methylation status is not called when there is no
read aligned to it.

Again, we used Sherman to simulate a dataset of BS reads from the reference
genome A.thaliana under a more realistic scenario. This large-scale dataset con-
sisted of four subsets, each of which contained one million 100bp-reads at a fixed
mutation rate (0, 1, 3, and 5 SNPs per read for four subsets, respectively). More-
over, we set the bisulfite conversion rates for cytosines in CG and non-CG contexts
based on a previously reported distribution of methylated cytosines in A.thaliana,
which are 60% and 20%, respectively [16]. The performance of TAMeBS and
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Bismark in estimating the genome-wide methylation percentage along with the
mapping performance can be found in Supplementary Material. In particular,
TAMeBS reported the same methylation percentages as Bismark in all genomic
contexts. It is worth noting that, as a previous study has demonstrated, Bismark
could generally achieve very high quantitative accuracy in estimating methylation
percentages [[11]. Thus, TAMeBS is able to perform accurate methylation estima-
tion as well.

We further compared the absolute numbers of cytosines in genome called by
these two tools as methylated or unmethylated. TAMeBS successfully called about
76% cytosines in the reference genome, whereas Bismark called only 48% cy-
tosines. It means that there were more than half of cytosines in the genome for
which Bismark did not find any read alignment. Moreover, we found that 83% of
cytosines called by Bismark were also called by TAMeBS. To be specific, TAMeBS
called about 17 million more cytosines than Bismark (among a total of about 42
million cytosines in the genome). This superior performance of TAMeBS shall be
mainly attributed to its high mapping efficiency (95.8%) and F-measure (97.8%)
in the previous alignment procedure. We believe that a high methylation call-
ing rate of cytosines in genome is vital to many other applications such as the
genome-wide detection of differentially methylated regions [7].

4 Conclusion

In this paper we introduced a new BS read mapping tool called TAMeBS for DNA
methylation analysis. It aims to align long bisulfite-treated reads onto a reference
genome sequence with high mapping efficiency and sensitivity so that the methy-
lation status of each genomic cytosine can be accurately estimated. To this end,
we built TAMeBS on several recent advances in sequence alignment techniques,
including bi-directional FM-index, approximate seeds, and the likelihood-ratio
scoring matrix which is designed particularly for aligning bisulfite-treated DNA
reads. In both simulated and real data experiments, TAMeBS demonstrated its
strong ability to detect more uniquely mapped reads than other tested tools while
retaining a good balance between mapping sensitivity and precision. Moreover,
TAMeBS achieved comparably high accuracy in methylation percentage estima-
tion with the existing mapping tool Bismark. However, TAMeBS could determine
the methylation status for many more cytosines in genome than Bismark. It is a
feature that many subsequent analyses shall find beneficial.

We noticed that TAMeBS required much more running time and memory than
other mapping tools as the mutation rate increased. Although it shall not be a
big issue that prevents TAMeBS from running, we are currently working on code
optimization in order to reduce its computing cost.
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