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Abstract

As the next generation RNA sequencing becomes the dominating technol-

ogy for studying the gene expression profiles, downstream statistical analysis

tools are needed urgently. Clustering samples is an important approach to re-

veal their relationships, such as for the discovery of new subtypes of cancer

cells. To cluster high dimensional data, it is also of interest to select the vari-

ables (genes) informative for clustering. We proposed a penalized model-based

method to select genes and perform clustering simultaneously. The negative

binomial mixture model is developed which are suitable for the nonnegative

and discrete count data. Moreover, our method can automatically determine

the number of clusters using the Bayesian information criterion. Additionally,

hybrid-hierarchical tree guided by the output from model-based clustering can

be applied to visualize partial clustering structure in a hierarchical way.

Keywords: EM algorithm; Mixture model; Negative Binomial distribution; Pe-

nalized likelihood; RNA sequencing.
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1 Introduction

The next generation RNA sequencing (RNA-Seq) (Wang and others (2009); Metzker

(2010)) is currently a widely used technology to measure gene expressions. Briefly, a

targeted RNA population is isolated and converted to a library of cDNA fragments.

These cDNA fragments are then sequenced by high-throughput DNA sequencing ap-

proaches. After this process, millions of short reads (30-400 bp in length) can be

obtained. Given the reference genome or transcriptome, these reads are aligned and

pooled into regions, such as genes and exons. For convenience of reference, we as-

sume that all such regions correspond to genes in this paper. The number of short

reads mapped to each gene is then counted to quantify gene expression. The resulting

RNA-Seq count data is nonnegative and discrete in nature.

With such data sets, researchers can use statistical methods to perform various

downstream analysis, such as identifying differentially expressed (DE) genes (e.g.,

Anders and Huber (2010); Robinson and others (2010)) and classification or clustering

of samples (e.g., Berninger and others (2008); Witten (2011)) and genes (e.g., Si and

others (2014)). Note clustering can be performed on either genes or samples, or

both simultaneously. In this article, we focus on the clustering of samples based on

the variation of gene expression profiles across different tissues or subtypes of cancer

cells. Due to the typically large number of genes compared to number of samples, this

problem falls into the “large p small n” paradigm that has attracted a lot of attention

recently in biostatistics (Guo and others (2010); Ma and others (2011); Wang and

others (2012); Chen and others (2013); Hao and Zhang (2014)).

Although a lot of articles contribute to the clustering analysis with the use of the

microarray data (e.g., Spellman and others (1998), Ramaswamy and others (1998),

Yeung and Ruzzo (2001) and Pan and Shen (2007)), which was the most popular

technology to quantify the gene expression before the advent of RNA-Seq, there

are fewer methods proposed for the latter. Berninger and others (2008) developed

a Bayesian method to compute the dissimilarity matrix in the clustering analysis
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of small RNA cloning data from sequencing technology. Anders and Huber (2010)

suggested to transform the data for stabilizing the variance and then compute the

squared Euclidean distance using these transformed data. Robinson and others (2010)

provided a clustering function using 500 features with highest variance in their edgeR

software package. Witten (2011) modelled the RNA-seq count data with a Poisson log-

linear model and computed the dissimilarity matrix by a modified log-likelihood using

the power transformed data. These methods mentioned above are distance-based

methods. The benefit of such methods is the ability to visualize the clustering results

clearly by the related techniques, such as hierarchical clustering or multidimensional

scaling. However, they lack a probabilistic interpretation for clustering and provide

no statistically sound way of determining the number of clusters.

The model-based clustering (McLachlan and Peel, 2000) is a popular statistical

approach to tackle these issues. This method allows soft allocation of samples to clus-

ters. Moreover, with a well-defined likelihood, many criteria such as the Akaike In-

formation Criterion (AIC) (Akaike, 1973), the Bayesian Information Criterion (BIC)

(Schwartz, 1978) and Extended Bayesian Information Criterion (EBIC) (Chen and

Chen (2008) and Chen and Chen (2012)), have been developed to perform model

selection.

Another important issue related to the clustering of RNA-Seq count data is gene

selection. Such data have large dimension P (the number of genes) and small sample

size n and generally a lot of genes are noises in the sense they are not differentially

expressed across different clusters. Accordingly, it is natural to perform gene selection

when we conduct clustering. Besides that the set of selected genes can be of interest

in itself, this will potentially improve clustering accuracy. To our knowledge, gene

selection for RNA-Seq count data is not currently available for clustering, except to

heuristically select those genes with larger variances in a preprocessing step (Robinson

and others , 2010). We will apply the penalized model-based method to perform gene

selection and clustering simultaneously. The penalized normal mixture model was
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proposed in Pan and Shen (2007); Zhou and others (2009) for clustering microarray

data. Khalili and Chen (2007) developed the penalized model-based method for

mixture of regression models. To determine the number of clusters and the number

of important genes, we use the Bayesian information criterion (BIC) as in Pan and

Shen (2007). To model the RNA-Seq count data, Poisson model can work quite well

if no biological replicates exist (Marioni and others , 2008); otherwise, the negative

binomial (NB) model (Robinson and others (2010); Anders and Huber (2010)) can be

applied because biological replicates may give rise to over-dispersion. In this paper,

we focus on NB mixture model of which the Poisson mixture model is a special

case. We compare our method with three competing methods: PoiClaClu (Witten,

2011), edgeR (Robinson and others , 2010) and DESeq (Anders and Huber, 2010)

in simulation and four real data sets. Our proposed method can often get better

clustering results. The proposed method can be executed in the R package PMixClus

available at https://github.com/TianYe00/PMixClus.git.

The rest of the article is organized as follows. Section 2 presents the statistical

models for clustering of count data and discuss some issues in implementation. Then

the model selection criterion and a method to construct a partial hierarchical clus-

tering guided by the ouput of model-based clustering is proposed. Section 3 contains

our simulation studies and application of the method to four publicly available data

sets. The paper is concluded in Section 4 with a discussion.

2 Methods

2.1 Model

Suppose that the read count data x contains n samples (rows) and P genes (columns).

Let xj = (xj1, . . . , xjP ) denote the read counts of P genes in sample j for j = 1, . . . , n.

For mathematical simplicity, it is assumed that all genes are independent and xj

follows a finite mixture distribution
∑K

k=1 πkfk(xj ;ψjk), where fk is the discrete
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distribution for kth cluster with parameter vectorψjk, and πk is the mixing proportion

satisfying 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. The log-likelihood of the mixture model is

logL(Θ) =
n∑
j=1

log{
K∑
k=1

πkfk(xj ;ψjk)}, (1)

where Θ = {(πk,ψjk) : k = 1, . . . , K; j = 1, . . . , n}. Denote µjkp = E(xjp) if sample

j belongs to cluster k. To facilitate gene selection, one key development here is to

decompose µjkp as µjkp = sjγpθkp subject to identifiability constraint
∑n

j=1 sj = n,

where sj is the size factor for sample j (sequencing depth for sample j), γp is the

average read counts of gene p over all samples and θkp represents cluster-specific effect

for gene p. If θkp = 1 for all k, it means that gene p is not differentially expressed

across clusters and should be treated as noise variables. This observation suggests

that we can perform gene selection by shrinking many of the θkp towards 1. Thus we

propose to use the following LASSO penalty (Tibshirani, 1996):

Pλ(Θ) = λ
K∑
k=1

P∑
p=1

|logθkp| ,

where λ > 0 is a tuning parameter. Accordingly, the penalized log-likelihood function

for the mixture model is defined as,

logLP (Θ) = logL(Θ)− Pλ(Θ) .

We now introduce the method based on the NB distribution. We assume sjp|j ∈
Ck ∼ NB(µjkp, φp), where NB(., .) is the negative binomial distribution with mean

µjkp = sjγpθkp and variance µjkp+φpµ
2
jkp, Ck contains the samples for cluster j, and φp

is the gene-specific dispersion parameter. When φp = 0, this reduces to the Poisson

model. Thus the parameter set ψjk in the model (1) is ψjk = {(sj, γp, θkp, φp) :

p = 1, . . . , P}. The EM algorithm is applied to find the optimizer of the penalized

5



likelihood and the details are presented in the Appendix.

2.2 Initialization strategy

Many articles have already demonstrated the importance of the initialization strategy

when the mixture model is fitted by EM algorithm (Seidel and others , 2000; McLach-

lan and Peel, 2000). For simplicity, we estimated the size factor sj by median ratio

method (Anders and Huber, 2010) and the value is fixed when running the EM algo-

rithm. We use the K-means method to get initial class labels and the starting values

of θkp and γp are obtained by simple moment estimator. For the initial values of φp.

Lu and others (2005) proposed a dispersion estimator for the over-dispersed log-linear

model by applying the goodness-of-fit statistic in the analysis of SAGE data. Li and

others (2012) applied a similar idea to estimate the transformation for data exhibit-

ing over-dispersion using the Poisson goodness-of-fit statistic. Following this idea, we

use the NB goodness-of-fit statistic to obtain the starting values of φp. We divide

genes into M groups according to the mean counts of genes and then estimate the

dispersion parameters for each group of genes. In the mth group, the goodness-of-fit

statistics is

GOFmp =
∑
j

(xjp − µ̂k(j)p)2

µ̂k(j)p(1 + φmµ̂k(j)p)
,

where k(j) denotes the cluster identity for sample j. Since xjp’s are independently NB

distributed, the approximate distribution of GOFmp is χ2 with (n− 1)(P/M − 1) de-

grees of freedom. In order to get rid of the outliers, we set Sm = {p : GOFmp in (ε, 1−
ε) quantile of all GOFmp}, where ε ∈ (0, 1

2
) is a fixed constant. Then φ̂m is estimated

by ∑
p∈Sm

GOFmp = (1− 2ε)(n− 1)(P/M − 1) .

We set ε = 0.25 and divide genes into 10 groups. This initialization strategy borrows

information from different genes within a group to deal with the problem of small
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sample size typical for RNA-seq data.

2.3 Model selection and hybrid-hierarchical tree

For penalized model-based clustering, it is important to determine the number of

clusters K and the regularization parameter λ. Several useful selection criteria can be

applied in the model-based clustering, such as AIC, BIC and some modified versions.

Here we use BIC (Pan and Shen (2007)) which is defined as

BIC = −2logL(Θ̂) + log(n)de ,

where de = K + 2P + KP − 1 − q is the effective number of parameters and

q = #{(k, p) : θ̂kp = 1}.
In many cases, we may want to visualize the hierarchical clustering structure. For

this we use the hybrid-hierarchical (HH) tree guided by the result from penalized

model-based clustering. The HH tree applies agglomerative clustering to the set of

clusters obtained from model-based clustering. Thus it produces a partial hierarchical

clustering containing only clusters coarser than output from model-based clustering.

The method was first proposed in Karypis and others (1999); Vaithyanathan and

Dom (2000) and later summarized and extended in Zhong and Ghosh (2003). Since

one objective of clustering is to identify subtypes of cells, the partial hierarchical tree

can be used to investigate how the subtypes organize themselves into coarser groups.

Let K0 be the number of clusters selected by penalized model-based clustering.

When building the HH tree, in the ith merging step, we have K0 − i + 1 clusters

C1, . . . , CK0−i+1. The distance between two clusters, Ca and Cb is defined by

D(Ca, Cb) = log

∏
j∈Ca

fa(xj ; µ̂ja,φ)
∏

j∈Cb
fb(xj ; µ̂jb,φ)∏

j∈Cc
fc(xj ; µ̂jc,φ)

,

where Cc = Ca ∪ Cb and µ̂ja, µ̂jb and µ̂jc are the MLE based on observations from
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cluster Ca, Cb and Cc, respectively. The values of φ = (φ1, . . . , φP ) above assume the

estimated values from the penalized model-based clustering. The HH tree is mainly

used as a heuristic-based visualization tool to see how the clusters can be further

grouped.

3 Numerical Evaluation and Comparison

We compare the results of our proposed method with those of PoiClaClu (Witten,

2011), edgeR (Robinson and others , 2010) and DESeq (Anders and Huber, 2010)

and evaluate the performances in terms of clustering accuracy and gene selection.

PoiClaClu measures the distance using the power transformed sequencing data based

on the Poisson log-linear model. edgeR models the read counts with NB distribution

and proposes a method to compute the distance matrix based on the 500 selected genes

that have the largest dispersion across all samples. DESeq uses variance stabilizing

transformation of count data based on the NB model and then computes the pairwise

squared Euclidean distances.

3.1 Application to Real Data

We study the performances of PMixClus and the other three competing methods on

four real data sets: Liver and Kidney (Marioni and others , 2008), MAQC-2 (Bullard

and others , 2010), Yeast (Nagalakshmi and others , 2008) and Cervical Cancer (Witten

and others , 2010). There are only technical replicates in the Liver and Kidney and

MAQC-2 data sets. The Yeast data set has both technical and biological replicates

while the Cervical Cancer has only biological replicates. Additionally, the MAQC-2

data set was generated from the MicroArray Quality Control consortium and hence

we can use the data set from real time reverse-transcription PCR (qRT-PCR) as the

gold standard to identify the DE genes. The details of these data sets can be found

in the Appendix.
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3.1.1 Clustering and Model Selection.

For Liver and Kidney and MAQC-2 data sets, all of the algorithms output the correct

clustering when the number of clusters is specified to be K = 2. Furthermore, for the

proposed PMixClust, K = 2 is indeed selected by BIC.

The clustering of Yeast and Cervical Cancer data sets is more challenging. For

Yeast data set, the six samples fall into two known clusters (dT and RH). PMixClus

and PoiClaClu obtain the same clustering results with K = 5. With a hierarchical

representation (using HH tree for our method), all samples are correctly clustered at

level K = 3 except for a RH biological replicate (Figure 2). In contrast, clustering

from edgeR and DESeq looks worse based on the respective constructed trees.

For the Cervical Cancer data set, we again identify K = 5 by BIC and we build

the HH tree with five leaves at the bottom. To make comparison with other meth-

ods, we cut all hierarchical trees constructed by different methods at level 5 (Figure

3). Visually, our method matches best with the known three clusters (color coded),

followed by PoiClaClu. Figure 4 depicts the RI values of different methods when K

varies from 2 to 5. The method PMixClus(HH) is based on the tree constructed by

HH method, and the method PMixClus is based on applying our method with K fixed

to a value between 2 and 5 when using the BIC to choose λ only. We also present the

model-based clustering result when no gene selection is performed (λ = 0). From Fig-

ure 4 (b), it is clear that our proposed methods obtain better clustering results than

the other three, even with no gene selection, except when K = 2 where PoiClaClu is

only inferior to PMixClus(HH). Note in this example there are 3 known clusters.

3.1.2 Gene Selection.

From Figure 4(b), we can tell that the results with gene selection (the red line and

the blue line) are better than those without gene selection (the black line). In Figure

5 we display the ratios of correctly included genes to the total number of DE genes

when the number of selected genes increases (obtained using different λ), as well as
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the ratio of correctly excluded genes to the total number of non-DE genes. The BIC

selected a model which includes 298 genes as noise (shown as solid triangle and solid

circle in the figure).

3.2 Simulation Study

3.2.1 Simulation Setup.

In each data set, the read count xjp|j ∈ Ck for gene p in sample j belonging to

cluster k follows the distribution NB(sjγpθkp, φp). The RNA-seq count data x with

P = 10000 genes are generated from two clusters, each of which contains 10 samples.

The size factor sj is generated from Unif(0.5, 1.7) and γp from Exp(1/100). Among

the 10000 genes, the first 3000 genes are differentially expressed between clusters. For

some constant z > 1, in the first cluster, θkp is set to be z and 1/z for the first 1500

genes and the next 1500 genes, respectively. Similarly, for the second cluster, θkp is

set to be 1/z and z, for the first 1500 genes and the next 1500 genes respectively. For

the remaining 7000 genes, we set θkp = 1. By the descriptions above, z represents

the level of fluctuation between different clusters and we consider two values z = e0.2

and z = e0.5 in our simulations. For the dispersion parameter φp, we test four values:

φp = 0.01, φp = 0.1 and φp = 0.5, and φp = 1/(100 + γp), the last of which is similar

to the setup used in Anders and Huber (2010) and Si and others (2014). For each

setup, 50 data sets are generated.

3.2.2 Evaluation of Clustering.

We compare the clustering performance of PoiClaClu, edgeR, DESeq, and our pro-

posed method PMixClus. Here we assume the true number of clusters is known,

since the other three methods do not suggest a value for the number of clusters.

Furthermore, for a fair comparison, we estimate the size factor sj by median ratio

method in all algorithms. To assess the clustering performance, we use the rand index
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(RI) (Rand, 1971), which measures the similarity between the true clusters and the

estimated clusters. The higher the RI value is, the more accurate is the estimated

clustering .

When z = e0.5 (larger differences between clusters), all methods can correctly

assign the samples to the two clusters for all settings of dispersion parameter φp. For

z = e0.2, we compare the RI values of different methods in Table 1. All methods

except for edgeR could achieve correct clustering results when dispersion value is not

too high (last three settings of φp). When the over-dispersion is high (φp = 0.5),

PMixClus performs best among all methods.

3.2.3 Evaluation of Gene Selection.

To evaluate the performance of gene selection for the proposed method, we report

noise features exclusion rate (NER), informative features exclusion rate (IER) and

accuracy (ACC). NER is the ratio of the number of noise features excluded by a

method to the number of true noise features. IER is the ratio of the number of

informative features excluded to the number of true informative features. ACC is the

proportion of true noise features and true informative features correctly found among

all features.

In Table 2, we summarize the NERs, IERs and ACCs of our proposed method on

simulated data sets with different settings of z and φp. We obtain a good balance of

NER and IER when the over-dispersion was not too high. When over-dispersion is

high, many informative features are falsely excluded. However this is not unexpected

since it is hard for any algorithm to distinguish between differences in expression

caused by different clusters and caused by over-dispersion. Note that we can still

obtain the relative high RI values shown in Table 1 even with high dispersion.
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3.2.4 Dispersion Parameter Estimation.

Dispersion parameters have a great effect on gene selection and clustering. How-

ever there are some difficulties that prevent us from obtaining accurate estimates of

dispersion. Firstly, as a result of high costs of the experiment, the RNA-seq data

normally has low sample size and hence it is challenging to estimate the dispersion

accurately. Secondly, the fluctuation among different clusters may give rise to larger

estimated values of dispersion for the DE genes. Thirdly, for the penalized mixture

model, over-estimation can result from shrinking the mean parameters. We used a

robust initial values of φp as explained in Section 2 that borrows information from

multiple genes.

To illustrate the estimation of dispersion, we generate one data set from each

simulation setup and plot the estimates of the dispersion parameter φp in Figure 1. It

is worth noting that estimates obtained by our method come closer to the true value

of φp when log(γp) increases and the fluctuation decreases. When the true dispersion

is large ((a), (b), (e) and (f) in Fig. 1), the proposed method can get more accurate

estimates.

3.2.5 Evaluation of Model Selection.

To select proper models for simulated data sets, we examine K = 1, 2, 3, 4 and a grid

of values for λ. We apply BIC to obtain the optimal combination of λ and K. Table 3

shows that BIC can select the correct K in most cases (K = 4 never selected) except

when both differences in clusters and dispersion is large. In the latter case, this is

likely due to that differences in expression caused by dispersion can be confounded

with differences between cluster.
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4 Conclusions

In this work, we proposed the penalized model-based method to accomplish clustering

analysis on RNA-seq count data. Typically these data sets have the characteristics

of high dimension and low sample size. Moreover many of the features are nonin-

formative about the cluster and hence should be automatically excluded in order to

increase the accuracy of clustering. The proposed method has the desired ability of

performing clustering and gene selection simultaneously. In addition, model-based

approach allows us to apply BIC to determine the number of clusters.

A shortcoming of the proposed method is that computationally it is much slower

than other methods. Table 4 compares the computational time of different methods

on the four real data sets. For our method, 20 values of λ and K = 1, . . . , 6 is used

for parameter search. The algorithm is stopped when the relative change in penalized

log-likelihood is less than 10−6.

The l1 penalty is applied in the mixture model to select genes. However it may

penalize the large values excessively (Zou, 2006). This bias can also lead to larger esti-

mates of dispersion and further result in inaccuracy of the gene selection. Some other

penalties may be applied to tackle this problem, such as hard thresholding penalty or

SCAD penalty (Fan and Li (2001)). Nevertheless, these penalties can complicate nu-

merical computation significantly. Consequently to design better penalties in the NB

mixture model for clustering with fast numerical implementation will be our future

research topics.
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APPENDIX

A.1 EM Algorithm

We use EM algorithm (Dempster and others , 1977; McLachlan and Peel, 2000; Fraly,

1998; Pan and Shen, 2007; Si and others , 2014) to estimate the parameters. The

complete-data penalized log-likelihood is given by

logLc,P (Θ) =
n∑
j=1

K∑
k=1

zkj{logπk + logfk(xj ;ψjk)} − λ
K∑
k=1

P∑
p=1

|logθkp|, (A.1)

where zkj = 1 if sample j belongs to cluster k and zkj = 0 otherwise. zkj is treated

as missing data in the EM algorithm.

A.1.1 E-Step.

We need to compute the conditional expectation of penalized log-likelihood (A.1) for

the complete data with respect to zkj given data x. On the (m+ 1)th iteration, this

conditional expectation is

QP (Θ; Θ̂(m)) = EΘ̂(m)(logLc,P (Θ)|x)

=
∑
k

∑
j

τ̂
(m)
kj [logπk + logfk(xj ;µjk,φ)]− λ

K∑
k=1

P∑
p=1

|logθkp| ,(A.2)

where τ̂
(m)
kj is the posterior probability that the sample j comes from kth cluster given

the estimates of other parameters from previous iterations:

τ̂
(m)
kj = EΘ̂(m)(zkj|x) =

π̂
(m)
k fk(xj ; µ̂

(m)
jk , φ̂

(m))∑K
k=1 π̂

(m)
k fk(xj ; µ̂

(m)
jk , φ̂

(m))
.

19



A.1.2 M-Step.

On the (m+ 1)th M-step, we firstly get the estimator of πk:

π̂
(m+1)
k =

∑
j

τ̂
(m)
kj /n, k = 1, . . . , K.

In this paper, the size factor sj is computed by median ratio method (Anders and

Huber, 2010). Then we maximize (3) with respect to θkp, γp and φp for p = 1, . . . , P

and k = 1, . . . , K. Since it is hard to jointly maximize over these parameters, we

maximize each paramter in turn with others fixed. For the Poisson model (this

special case is available in the R package although not discussed in the paper), the

maximizers can be found in closed form. For the NB model, we apply the Newton

Raphson (NR) algorithm which is similar to that used in Goeman (2010) to compute

the maximizers.

A.2 Real Data Sets.

Liver and Kidney compared the expression of 22925 genes between a liver sample

and a kidney sample from a human male. Seven technical replicates were generated

for each sample. We extracted five replicates, which had the same library preparation

(at the 3 pM concentration), for each sample. We focused on the 18228 genes whose

total gene counts over all samples are not less than 5. The data set can be downloaded

from a supplementary file in Marioni and others (2008).

MAQC-2 is the mRNA-seq data set related to MicroArray Quality Control

Project, comparing two types of biological samples (Brain and UHR). There were

seven technical replicates with one specific library preparation for each biological sam-

ple. A subset of genes (around one thousand) were assayed by qRT-PCR (Canales

and others (2006)). Based on the fold changes of genes in qRT-PCR data, we se-

lected 188 genes from the subset, including 141 DE genes (fold change > 2) and 47

non-DE genes (fold change < 0.2). Then we replicated the 47 non-DE genes 5 times
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so that the ratio of DE genes to non-DE genes is more reasonable. The sequencing

data set can be downloaded from http://bowtie-bio.sourceforge.net/recount

(Frazee and others , 2011) and the qRT-PCR data can be downloaded from www.ncbi.

nlm.nih.gov/geo with GEO Accession GSE5350.

Yeast is the RNA-seq data set, comparing the replicates of Saccharomyces cere-

visiae cultures. Three replicates were tested under each of two library preparation,

oligo(dT) (dT) and random hexamers (RH). Specifically, there was one original repli-

cate, one technical replicate and one biological replicate under each library prepara-

tion protocol. We focused on the 6710 genes whose total gene counts over all samples

are at least 3. The data set can be downloaded from a supplementary file in Anders

and Huber (2010).

Cervical Cancer is the microRNA (miRNA), 18-30 nucleotides in length, se-

quencing data set which were used to compare cervical cancer tissues and normal

tissues. This data set included 29 samples from each of cervical cancer tissues and

29 from each of normal tissues with 714 miRNA. Among cervical cancer tissue sam-

ples, there are 21 squamous cell carcinomas (SCC), 6 adenocarcinomas (ADS) and 2

unclassified. We excluded two unclassified samples from analysis. We focused on the

636 genes whose total gene counts over all samples are at least 5. The data set can

be downloaded from a supplementary file in Witten and others (2010).

21



0 2 4 6

−
8

−
6

−
4

−
2

0

φp=0.5, z=e
0.2

log(γp)

lo
g
(φ

p
)

(a)

0 2 4 6

−
8

−
6

−
4

−
2

0

φp=0.1, z=e
0.2

log(γp)

lo
g
(φ

p
)

(b)

0 2 4 6

−
8

−
6

−
4

−
2

0

φp=0.01, z=e
0.2

log(γp)

lo
g
(φ

p
)

(c)

0 1 2 3 4 5 6 7

−
8

−
6

−
4

−
2

0

φp=1/(100+γp), z=e
0.2

log(γp)

lo
g
(φ

p
)

(d)

0 2 4 6

−
8

−
6

−
4

−
2

0

φp=0.5, z=e
0.5

log(γp)

lo
g
(φ

p
)

(e)

0 2 4 6

−
8

−
6

−
4

−
2

0
φp=0.1, z=e

0.5

log(γp)

lo
g
(φ

p
)

(f)

0 2 4 6

−
8

−
6

−
4

−
2

0

φp=0.01, z=e
0.5

log(γp)

lo
g
(φ

p
)

(g)

0 1 2 3 4 5 6 7

−
8

−
6

−
4

−
2

0

φp=1/(100+γp), z=e
0.5

log(γp)

lo
g
(φ

p
)

(h)

Figure 1: This figure displays the log(φp) versus the true values of log(γp). The grey
dots are the estimates from our proposed method with fixed K = 2. The black line
represents the true dispersion value.
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Figure 2: The hierarchical cluster dendrograms of Yeast data set are plotted based
on the analysis of PMixClus, PoiClaClu, edgeR and DESeq. The dT samples and
RH samples are in red and green respectively.
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Figure 3: The hierarchical cluster dendrograms of Cervical Cancer data set are plotted
based on the analysis of PMixClus, PoiClaClu, edgeR and DESeq. The dendrograms
of PoiClaClu, edgeR and DESeq are from cutting the hierarchical tree at the fifth
level. The ADC, SCC and normal samples are in green, blue and red respectively.
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Figure 4: This figure displays the RIs by cutting the hierarchical tree at corresponding
levels, except for PMixClus and PMixClus(λ = 0). The curves for PMixClus and
PMixClus(λ = 0) show the RIs resulting from using different fixed number of clusters
in our method.
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Figure 5: Plot for the the true positive ratio (number of correctly included DE
genes/number of DE genes, red triangular) and the true negative ratio (number of
correctly excluded non-DE genes/number of non-DE genes, green circle).

Table 1: Mean values of RIs and standard errors over 50 simulated data sets with the
level of fluctuation z = e0.2.

φp PMixClus PoiClaClu edgeR DESeq
0.5 0.990(0.074) 0.760(0.204) 0.502(0.094) 0.851(0.233)
0.1 1(0) 1(0) 0.490(0.060) 1(0)
0.01 1(0) 1(0) 0.751(0.258) 1(0)

1/(100 + γp) 1(0) 1(0) 0.671(0.242) 1(0)

Table 2: Mean values and standard errors of NERs, IERs and ACCs over 50 simulated
data sets when we use the true K = 2 or select K by BIC.

z φp NER(K=2) IER(K=2) ACC(K=2) NER(BIC) IER(BIC) ACC(BIC)

e0.2

0.5 0.985(0.042) 0.946(0.035) 0.706(0.019) 0.985(0.010) 0.935(0.031) 0.709(0.004)
0.1 0.999(0.000) 0.960(0.005) 0.712(0.001) 0.945(0.051) 0.600(0.209) 0.781(0.039)
0.01 0.839(0.009) 0.162(0.013) 0.839(0.005) 0.817(0.078) 0.158(0.021) 0.824(0.049)

1/(100 + γp) 0.790(0.028) 0.181(0.022) 0.799(0.014) 0.790(0.028) 0.181(0.022) 0.799(0.014)

e0.5

0.5 0.966(0.113) 0.882(0.269) 0.712(0.026) 0.752(0.168) 0.180(0.181) 0.772(0.095)
0.1 0.771(0.026) 0.041(0.083) 0.828(0.008) 0.750(0.055) 0.029(0.004) 0.817(0.038)
0.01 0.698(0.011) 0.072(0.008) 0.767(0.007) 0.698(0.011) 0.072(0.008) 0.767(0.007)

1/(100 + γp) 0.628(0.049) 0.084(0.092) 0.714(0.009) 0.621(0.013) 0.071(0.007) 0.714(0.008)
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Table 3: Frequencies of the number of clusters K selected by BIC from 50 simulated
data sets. The mean values of selected λ are also reported.

K = 1 K = 2 K = 3

z φp Freq λ Freq λ Freq λ

e0.2

0.5 10 0(0) 36 7.71(0.93) 4 7.39(0)
0.1 1 0(0) 48 20.09(0) 1 14.07(1.11)
0.01 0 − 45 20.09(0) 5 17.81(3.12)

1/(100 + γp) 0 − 50 21.82(1.57) 0 -

e0.5

0.5 2 0(0) 2 10.31(0) 46 4.84(0.96)
0.1 1 0(0) 48 7.39(0) 1 7.39(0)
0.01 0 − 50 14.39(0) 0 −

1/(100 + γp) 1 0(0) 49 14.39(0) 0 −

Table 4: Computational time for different methods on the real data sets.

PMixClus PoiClaClu edgeR DESeq
Liver and Kidney 2h 4s 1s <1s
MAQC-2 1h 2s 1s <1s
Yeast 1.5h 1s <1s <1s
Cervical Cancer 1h 2s 1s <1s
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